• Share

Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity
Citation: Erkenbrack, E. M., Thompson, J. R.(2019).Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity. Communications Biology (2): 160.
The multiplicity of cell types comprising multicellular organisms begs the question as to how cell type identities evolve over time. Cell type phylogenetics informs this question by comparing gene expression of homologous cell types in distantly related taxa. We employ this approach to inform the identity of larval skeletogenic cells of echinoderms, a clade for which there are phylogenetically diverse datasets of spatial gene expression patterns. We determined ancestral spatial expression patterns of alx1, ets1, tbr, erg, and vegfr, key components of the skeletogenic gene regulatory network driving identity of the larval skeletogenic cell. Here we show ancestral state reconstructions of spatial gene expression of extant eleutherozoan echinoderms support homology and common ancestry of echinoderm larval skeletogenic cells. We propose larval skeletogenic cells arose in the stem lineage of eleutherozoans during a cell type duplication event that heterochronically activated adult skeletogenic cells in a topographically distinct tissue in early development.

More Publications

Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids

Evolution of the animal body plan is driven by changes in developmental gene regulatory networks (GRNs), but how networks change to control novel developmental phenotypes remains in most cases unresolved. Here we address GRN evolution by comparing the endomesoderm GRN in two echinoid sea urchins, Strongylocentrotus purpuratus and Eucidaris tribuloides, with at least 268 million years of independent evolution. We first analyzed the expression of twelve transcription factors and signaling molecules of the S. purpuratus GRN in E. tribuloides embryos, showing that orthologous regulatory genes are expressed in corresponding endomesodermal cell fates in the two species. However, perturbation of regulatory genes revealed that important regulatory circuits of the S. purpuratus GRN are significantly different in E. tribuloides. Thus for instance mesodermal Delta/Notch signaling controls exclusion of alternative cell fates in E. tribuloides but controls mesoderm induction and activation of a positive feedback circuit in S. purpuratus. These results indicate that the architecture of the sea urchin endomesoderm GRN evolved by extensive gain and loss of regulatory interactions between a conserved set of regulatory factors that control endomesodermal cell fate specification.

Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm of echinoids

Notch signaling is a crucial cog in early development of euechinoid sea urchins, specifying both non-skeletogenic mesodermal lineages and serotonergic neurons in the apical neuroectoderm. Here, the spatial distributions and function of delta, gcm, and hesc, three genes critical to these processes in euechinoids, are examined in the distantly related cidaroid sea urchin Eucidaris tribuloides. Spatial distribution and experimental perturbation of delta and hesc suggest that the function of Notch signaling in ectodermal patterning in early development of E. tribuloides is consistent with canonical lateral inhibition. Delta transcripts were observed in the archenteron, apical ectoderm, and lateral ectoderm in gastrulating embryos of E. tribuloides. Perturbation of Notch signaling by either delta morpholino or treatment of DAPT downregulated hesc and upregulated delta and gcm, resulting in ectopic expression of delta and gcm. Similarly, hesc perturbation mirrored the effects of delta perturbation. Interestingly, perturbation of delta or hesc resulted in more cells expressing gcm and supernumerary pigment cells, suggesting that pigment cell proliferation is regulated by Notch in E. tribuloides. These results are consistent with an evolutionary scenario whereby, in the echinoid ancestor, Notch signaling was deployed in the ectoderm to specify neurogenic progenitors and controlled pigment cell proliferation in the dorsal ectoderm.
© 2016 Eric M Erkenbrack and SpringerNature. All rights reserved.