• Share

Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids
Citation: Erkenbrack, E. M., Davidson, E. H., Peter, I.S. (2018). Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids. Development. In press.
Download PDF
View at Development
Evolution of the animal body plan is driven by changes in developmental gene regulatory networks (GRNs), but how networks change to control novel developmental phenotypes remains in most cases unresolved. Here we address GRN evolution by comparing the endomesoderm GRN in two echinoid sea urchins, Strongylocentrotus purpuratus and Eucidaris tribuloides, with at least 268 million years of independent evolution. We first analyzed the expression of twelve transcription factors and signaling molecules of the S. purpuratus GRN in E. tribuloides embryos, showing that orthologous regulatory genes are expressed in corresponding endomesodermal cell fates in the two species. However, perturbation of regulatory genes revealed that important regulatory circuits of the S. purpuratus GRN are significantly different in E. tribuloides. Thus for instance mesodermal Delta/Notch signaling controls exclusion of alternative cell fates in E. tribuloides but controls mesoderm induction and activation of a positive feedback circuit in S. purpuratus. These results indicate that the architecture of the sea urchin endomesoderm GRN evolved by extensive gain and loss of regulatory interactions between a conserved set of regulatory factors that control endomesodermal cell fate specification.

More Publications

Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses

This work provides direct evidence of evolutionary rewiring of gene-regulatory circuitry accompanying divergence of two subclasses of echinoderm, the cidaroid and euechinoid sea urchins. These forms descend from a known common Paleo- zoic ancestor, and their embryos develop differently, offering an opportunity to probe the basic evolutionary process by which clade divergence occurs at the gene-regulatory net- work (GRN) level. We carried out a systematic analysis of the use of particular genes participating in embryonic skeleto- genic cell specification, building on an established euechinoid developmental GRN. This study revealed that the well-known and elegantly configured regulatory circuitry that underlies skeletogenic specification in modern sea urchins is largely a novel evolutionary invention. The results dramatically dis- play extensive regulatory changes in a specific developmental GRN, underlying an incidence of cladistic divergence at the subclass level.

Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantlyPiloderma species as the fungal partner. Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.
© 2016 Eric M Erkenbrack and SpringerNature. All rights reserved.