• Share

Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses
Citation: Erkenbrack, E. M., & Davidson, E. H. (2015). Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses.Proceedings of the National Academy of Sciences, 112(30), E4075-E4084.
Significance: This work provides direct evidence of evolutionary rewiring of gene-regulatory circuitry accompanying divergence of two subclasses of echinoderm, the cidaroid and euechinoid sea urchins. These forms descend from a known common Paleo- zoic ancestor, and their embryos develop differently, offering an opportunity to probe the basic evolutionary process by which clade divergence occurs at the gene-regulatory net- work (GRN) level. We carried out a systematic analysis of the use of particular genes participating in embryonic skeleto- genic cell specification, building on an established euechinoid developmental GRN. This study revealed that the well-known and elegantly configured regulatory circuitry that underlies skeletogenic specification in modern sea urchins is largely a novel evolutionary invention. The results dramatically dis- play extensive regulatory changes in a specific developmental GRN, underlying an incidence of cladistic divergence at the subclass level.

More Publications

The mammalian decidual cell evolved from a cellular stress response

Animals consist of a wide variety of cells that serve different functions depending on their location in the body. Cells with similar functions, or cell types, in different animal species are related both by an evolutionary line of descentÐsimilar to the relatedness of species themselvesÐand by a developmental line of descent in the embryo. Networks of interacting genes, or gene regulatory networks, control gene expression in the cell, thereby specifying cell type identity. Understanding how new cell types arise by changing gene regulatory networks is critical both to comprehending fundamental aspects of human biology and to manipulating cell types in the laboratory. We approached this question by studying endometrial stromal fibroblast (ESF) cells from the uterus of humans and opossums, two distantly related mammals. We showed that the distantly related cell type in opossum expresses a similar set of regulatory genes as the human cell, but in response to pregnancy-related signals, the opossum cells induce a stress response. In the human cells, these signals induce differentiation into decidual cells, a specialized cell type present in humans and closely related mammals. These results suggest that a gene regulatory network that modulated an ancestral, pregnancy-related stress response was hijacked and repurposed to function in differentiation and specification of the decidual cell type.

A Derived Allosteric Switch Underlies the Evolution of Conditional Cooperativity Between HOXA11 and FOXO1

Transcription factors (TFs) play multiple roles in development. Given this multifunctionality, it has been assumed that TFs are evolutionarily highly constrained. Here, we investigate the molecular mechanisms for the origin of a derived functional interaction between two TFs, HOXA11 and FOXO1. We have previously shown that the regulatory role of HOXA11 in mammalian endometrial stromal cells requires interaction with FOXO1, and that the physical interaction between these proteins evolved before their functional cooperativity. Here, we demonstrate that the derived functional cooperativity between HOXA11 and FOXO1 is due to derived allosteric regulation of HOXA11 by FOXO1. This study shows that TF function can evolve through changes affecting the functional output of a pre-existing protein complex.
©  2016 Eric M Erkenbrack and PNAS. All rights reserved.