• Share

Juvenile skeletogenesis in anciently diverged sea urchin clades
Citation: Gao, F., Thompson, J. R., Petsios, E., Erkenbrack, E., Moats, R. A., Bottjer, D. J., & Davidson, E. H. (2015). Juvenile skeletogenesis in anciently diverged sea urchin clades. Developmental biology, 400(1), 148-158.
Mechanistic understanding of evolutionary divergence in animal body plans devolves from analysis of those developmental processes that, in forms descendant from a common ancestor, are responsible for their morphological differences. The last common ancestor of the two extant subclasses of sea urchins, i.e., euechinoids and cidaroids, existed well before the Permian/Triassic extinction (252 mya). Subsequent evolutionary divergence of these clades offers in principle a rare opportunity to solve the developmental regulatory events underlying a defined evolutionary divergence process. Thus (i) there is an excellent and fairly dense (if yet incompletely analyzed) fossil record; (ii) cladistically confined features of the skeletal structures of modern euechinoid and cidaroid sea urchins are preserved in fossils of ancestral forms; (iii) euechinoids and cidaroids are among current laboratory model systems in molecular developmental biology (here Strongylocentrotus purpuratus [Sp] and Eucidaris tribuloides [Et]); (iv) skeletogenic specification in sea urchins is uncommonly well understood at the causal level of interactions of regulatory genes with one another, and with known skeletogenic effector genes, providing a ready arsenal of available molecular tools. Here we focus on differences in test and perignathic girdle skeletal morphology that distinguish all modern euechinoid from all modern cidaroid sea urchins. We demonstrate distinct canonical test and girdle morphologies in juveniles of both species by use of SEM and X-ray microtomography. Among the sharply distinct morphological features of these clades are the internal skeletal structures of the perignathic girdle to which attach homologous muscles utilized for retraction and protraction of Aristotles׳ lantern and its teeth. We demonstrate that these structures develop de novo between one and four weeks after metamorphosis. In order to study the underlying developmental processes, a method of section whole mount in situ hybridization was adapted. This method displays current gene expression in the developing test and perignathic girdle skeletal elements of both Sp and Et juveniles. Active, specific expression of the sm37 biomineralization gene in these muscle attachment structures accompanies morphogenetic development of these clade-specific features in juveniles of both species. Skeletogenesis at these clade-specific muscle attachment structures displays molecular earmarks of the well understood embryonic skeletogenic GRN: thus the upstream regulatory gene alx1 and the gene encoding the vegfR signaling receptor are both expressed at the sites where they are formed. This work opens the way to analysis of the alternative spatial specification processes that were installed at the evolutionary divergence of the two extant subclasses of sea urchins.

More Publications

Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity

To inform the evolution of the echinoderm larval skeletogenic cell, we have presented a framework for cell-type phylogenetic analysis that integrates spatial gene expression data with phylogenetic comparative methods to reconstruct ancestral gene expression. The genes we chose to include in our analyses have been studied in numerous echinoderm taxa and occupy crucial nodes of a well characterized gene regulatory network11,35. As the number of model and nonmodel organisms increases in evolutionary developmental biology, comparative analyses of spatial data will depend more on ancestral state reconstructions than on direct comparisons with an outgroup. However, it should be noted that such analyses are limited by several factors, including knowledge of a detailed GRN, invoking interspecies comparisons of development, and obtaining reliable divergence times and phylogenetic trees. The present study is not exempt from these limitations. Indeed, we chose to analyze five genes with broad phylogenetic sampling over twelve taxa. To support our findings, we ran pruned sensitivity analyses and concluded that decreasing the number of taxa reduced our ability to resolve ancestral states with confidence at certain nodes, especially the Asterozoan and Eleutherozoan MRCAs (Supplementary Fig. 12). Therefore, broad phylogenetic sampling is vitally important to resolve ancestral gene expression patterns. One could argue that increasing the number of genes in the analysis would help resolve the question of interest. However, we suggest that whether or not this is true will depend on the case at hand. For instance, in this study we analyzed genes from a GRN where the functional importance of many regulatory genes is well-known. In most cases, a well characterized GRN will not be available, and it will be equally important to possess a broad sampling of taxa across a phylogeny. For instance, as gene expression in early development becomes available in more asterozoans, which are under-sampled with respect to echinozoans in our analyses, we will gain greater confidence in our inferences at the asterozoan and eleutherozoan MRCAs. Indeed, we also see potential for the approach utilized herein to analyze ancestral states of GRN regulatory architecture. For example, the isolation and characterization of homologous cis-regulatory modules, from ATAC-seq, ChIP-seq, and other omics-level endeavors in phylogenetically distant organisms, could be then incorporated with the method presented here to determine which modules are lineage or cell-type specific.

Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantlyPiloderma species as the fungal partner. Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.
© 2016 Eric M Erkenbrack and Elsevier. All rights reserved.