• Share

Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes
Citation: Schrey, S. D., Erkenbrack, E., Früh, E., et al. (2012). Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes. BMC microbiology, 12(1), 1.
Significance: Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantlyPiloderma species as the fungal partner. Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

More Publications

Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms

Diverse sampling of organisms across the five ma- jor classes in the phylum Echinodermata is beginning to reveal much about the structure and function of gene regulatory net- works (GRNs) in development and evolution. Sea urchins are the most studied clade within this phylum, and recent work suggests there has been dramatic rewiring at the top of the skeletogenic GRN along the lineage leading to extant mem- bers of the euechinoid sea urchins. Such rewiring likely ac- counts for some of the observed developmental differences between the two major subclasses of sea urchins—cidaroids and euechinoids.

A Derived Allosteric Switch Underlies the Evolution of Conditional Cooperativity Between HOXA11 and FOXO1

Transcription factors (TFs) play multiple roles in development. Given this multifunctionality, it has been assumed that TFs are evolutionarily highly constrained. Here, we investigate the molecular mechanisms for the origin of a derived functional interaction between two TFs, HOXA11 and FOXO1. We have previously shown that the regulatory role of HOXA11 in mammalian endometrial stromal cells requires interaction with FOXO1, and that the physical interaction between these proteins evolved before their functional cooperativity. Here, we demonstrate that the derived functional cooperativity between HOXA11 and FOXO1 is due to derived allosteric regulation of HOXA11 by FOXO1. This study shows that TF function can evolve through changes affecting the functional output of a pre-existing protein complex.
© 2016 Eric M Erkenbrack. All rights reserved.