• Share

Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid
Citation: Thompson, J. R., Petsios, E., Davidson, E. H., Erkenbrack, E. M., Gao, F., & Bottjer, D. J. (2015). Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid.Scientific reports, 5.
Abstract: Echinoids, or sea urchins, are rare in the Palaeozoic fossil record, and thus the details regarding the early diversification of crown group echinoids are unclear. Here we report on the earliest probable crown group echinoid from the fossil record, recovered from Permian (Roadian-Capitanian) rocks of west Texas, which has important implications for the timing of the divergence of crown group echinoids. The presence of apophyses and rigidly sutured interambulacral areas with two columns of plates indicates this species is a cidaroid echinoid. The species, Eotiaris guadalupensis, n. sp. is therefore the earliest stem group cidaroid. The occurrence of this species in Roadian strata pushes back the divergence of cidaroids and euechinoids, the clades that comprise all living echinoids, to at least 268.8 Ma, ten million years older than the previously oldest known cidaroid. Furthermore, the genomic regulation of development in echinoids is amongst the best known, and this new species informs the timing of large-scale reorganization in echinoid gene regulatory networks that occurred at the cidaroid-euechinoid divergence, indicating that these changes took place by the Roadian stage of the Permian.

More Publications

Stress-induced evolutionary innovation: A mechanism for the origin of cell types

Cells frequently counteract environmental stress by conserved molecular mechanisms, leading to stress mitigation or apoptosis. Increasingly, studies on cellular stress responses intersect with cell type differentiation programs. It is hypothesized that integration of these conserved pathways is a mechanism of stress‐induced evolutionary innovation that is capable of generating novel cell types.

Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity

To inform the evolution of the echinoderm larval skeletogenic cell, we have presented a framework for cell-type phylogenetic analysis that integrates spatial gene expression data with phylogenetic comparative methods to reconstruct ancestral gene expression. The genes we chose to include in our analyses have been studied in numerous echinoderm taxa and occupy crucial nodes of a well characterized gene regulatory network11,35. As the number of model and nonmodel organisms increases in evolutionary developmental biology, comparative analyses of spatial data will depend more on ancestral state reconstructions than on direct comparisons with an outgroup. However, it should be noted that such analyses are limited by several factors, including knowledge of a detailed GRN, invoking interspecies comparisons of development, and obtaining reliable divergence times and phylogenetic trees. The present study is not exempt from these limitations. Indeed, we chose to analyze five genes with broad phylogenetic sampling over twelve taxa. To support our findings, we ran pruned sensitivity analyses and concluded that decreasing the number of taxa reduced our ability to resolve ancestral states with confidence at certain nodes, especially the Asterozoan and Eleutherozoan MRCAs (Supplementary Fig. 12). Therefore, broad phylogenetic sampling is vitally important to resolve ancestral gene expression patterns. One could argue that increasing the number of genes in the analysis would help resolve the question of interest. However, we suggest that whether or not this is true will depend on the case at hand. For instance, in this study we analyzed genes from a GRN where the functional importance of many regulatory genes is well-known. In most cases, a well characterized GRN will not be available, and it will be equally important to possess a broad sampling of taxa across a phylogeny. For instance, as gene expression in early development becomes available in more asterozoans, which are under-sampled with respect to echinozoans in our analyses, we will gain greater confidence in our inferences at the asterozoan and eleutherozoan MRCAs. Indeed, we also see potential for the approach utilized herein to analyze ancestral states of GRN regulatory architecture. For example, the isolation and characterization of homologous cis-regulatory modules, from ATAC-seq, ChIP-seq, and other omics-level endeavors in phylogenetically distant organisms, could be then incorporated with the method presented here to determine which modules are lineage or cell-type specific.
© 2016 Eric M Erkenbrack and SpringerNature. All rights reserved.