• Share

Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid
Citation: Thompson, J. R., Petsios, E., Davidson, E. H., Erkenbrack, E. M., Gao, F., & Bottjer, D. J. (2015). Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid.Scientific reports, 5.
Abstract: Echinoids, or sea urchins, are rare in the Palaeozoic fossil record, and thus the details regarding the early diversification of crown group echinoids are unclear. Here we report on the earliest probable crown group echinoid from the fossil record, recovered from Permian (Roadian-Capitanian) rocks of west Texas, which has important implications for the timing of the divergence of crown group echinoids. The presence of apophyses and rigidly sutured interambulacral areas with two columns of plates indicates this species is a cidaroid echinoid. The species, Eotiaris guadalupensis, n. sp. is therefore the earliest stem group cidaroid. The occurrence of this species in Roadian strata pushes back the divergence of cidaroids and euechinoids, the clades that comprise all living echinoids, to at least 268.8 Ma, ten million years older than the previously oldest known cidaroid. Furthermore, the genomic regulation of development in echinoids is amongst the best known, and this new species informs the timing of large-scale reorganization in echinoid gene regulatory networks that occurred at the cidaroid-euechinoid divergence, indicating that these changes took place by the Roadian stage of the Permian.

More Publications

Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm of echinoids

Notch signaling is a crucial cog in early development of euechinoid sea urchins, specifying both non-skeletogenic mesodermal lineages and serotonergic neurons in the apical neuroectoderm. Here, the spatial distributions and function of delta, gcm, and hesc, three genes critical to these processes in euechinoids, are examined in the distantly related cidaroid sea urchin Eucidaris tribuloides. Spatial distribution and experimental perturbation of delta and hesc suggest that the function of Notch signaling in ectodermal patterning in early development of E. tribuloides is consistent with canonical lateral inhibition. Delta transcripts were observed in the archenteron, apical ectoderm, and lateral ectoderm in gastrulating embryos of E. tribuloides. Perturbation of Notch signaling by either delta morpholino or treatment of DAPT downregulated hesc and upregulated delta and gcm, resulting in ectopic expression of delta and gcm. Similarly, hesc perturbation mirrored the effects of delta perturbation. Interestingly, perturbation of delta or hesc resulted in more cells expressing gcm and supernumerary pigment cells, suggesting that pigment cell proliferation is regulated by Notch in E. tribuloides. These results are consistent with an evolutionary scenario whereby, in the echinoid ancestor, Notch signaling was deployed in the ectoderm to specify neurogenic progenitors and controlled pigment cell proliferation in the dorsal ectoderm.

A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins

Comparative studies of early development in echinoderms are revealing the tempo and mode of alterations to developmental gene regulatory networks and to the cell types they specify. In euechinoid sea urchins, skeletogenic mesenchyme (SM) ingresses prior to gastrulation at the vegetal pole and aligns into a ring-like array with two bilateral pockets of cells, the sites where spiculogenesis will later occur. In cidaroid sea urchins, the anciently diverged sister clade to euechinoid sea urchins, a homologous SM cell type ingresses later in development, after gastrulation has commenced, and consequently at a distinct developmental address. Thus, a heterochronic shift of ingression of the SM cell type occurred in one of the echinoid lineages. In euechinoids, speci cation and migration of SM are facilitated by vascular endothelial growth factor (VEGF) signaling. We describe spatiotemporal expression of vegf and vegfr and experimental manipulations target- ing VEGF signaling in the cidaroid Eucidaris tribuloides.
© 2016 Eric M Erkenbrack and SpringerNature. All rights reserved.