• Share

stress-induced evolutionary innovation: a mechanism for the origin of cell types
Citation: Wagner, G.P., Erkenbrack, E. M., & Love, A.C. (2019). Stress-induced evolutionary innovation: A mechanism for the origin of cell types. BioEssays, 41(4), pp.
Understanding the evolutionary role of environmentally-induced phenotypic variation (i.e., plasticity) is an important issue in developmental evolution. A major physiological response to environmental change is cellular stress, which is counteracted by generic stress reactions detoxifying the cell. A model, stress‐induced evolutionary innovation (SIEI), whereby ancestral stress reactions and their corresponding pathways can be transformed into novel structural components of body plans, such as new cell types, is described. Previous findings suggesting that the cell differentiation cascade of a cell type critical to pregnancy in humans, the decidual stromal cell, evolved from a cellular stress reaction are described. It is hypothesized that the stress reaction in these cells was elicited ancestrally via inflammation caused by embryo attachment. The present study proposes that SIEI is a distinct form of plasticity‐based evolutionary change leading to the origin of novel structures rather than adaptive transformation of pre‐existing characters.

More Publications

Evolution of placental invasion and cancer metastasis are causally linked

Placental invasion into the maternal endometrium of the uterus shows substantial similarities to early cancer dissemination into stroma1,2,3,4. These similarities have inspired the hypothesis of antagonistic pleiotropy5,6. According to this hypothesis, trophoblasts evolved the capacity to invade the endometrium, leading to invasive placentation. These mechanisms can become reactivated in cancer cells, leading to a predisposition to metastasis. This implies that cancer malignancy should be limited to placental mammals where invasive placentation first evolved. This prediction, however, is inconsistent with the fact that opossums, with ancestrally non-invasive placenta7,8, get invasive skin cancers9. Here, we explore an alternative scenario in which stromal cells of the uterus evolved to either resist or permit invasion, determining the outcome of placental invasiveness9.

Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantlyPiloderma species as the fungal partner. Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.
© 2016 Eric M Erkenbrack and SpringerNature. All rights reserved.