• Share

The mammalian decidual cell evolved from a cellular stress response
Citation: Erkenbrack, E. M., Maziarz, J., Griffith, O. W., Liang, C., Chavan, A. R., Nnamani, M., & Wagner, G. P. (2016). The mammalian decidual cell evolved from a cellular stress response. PLOS Biol 16(8): e2005594.
Among animal species, cell types vary greatly in terms of number and kind. The number of
cell types found within an organism differs considerably between species, and cell type
diversity is a significant contributor to differences in organismal structure and function.
These observations suggest that cell type origination is a significant source of evolutionary
novelty. The molecular mechanisms that result in the evolution of novel cell types, however,
are poorly understood. Here, we show that a novel cell type of eutherians mammals, the
decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We
isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the
opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual
core regulatory genes respond to decidualizing signals but do not regulate decidual effector
genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and
oxidative stress response. We propose that the rewiring of cellular stress responses was an
important mechanism for the evolution of eutherian decidual cell type.

More Publications

A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins

Comparative studies of early development in echinoderms are revealing the tempo and mode of alterations to developmental gene regulatory networks and to the cell types they specify. In euechinoid sea urchins, skeletogenic mesenchyme (SM) ingresses prior to gastrulation at the vegetal pole and aligns into a ring-like array with two bilateral pockets of cells, the sites where spiculogenesis will later occur. In cidaroid sea urchins, the anciently diverged sister clade to euechinoid sea urchins, a homologous SM cell type ingresses later in development, after gastrulation has commenced, and consequently at a distinct developmental address. Thus, a heterochronic shift of ingression of the SM cell type occurred in one of the echinoid lineages. In euechinoids, speci cation and migration of SM are facilitated by vascular endothelial growth factor (VEGF) signaling. We describe spatiotemporal expression of vegf and vegfr and experimental manipulations target- ing VEGF signaling in the cidaroid Eucidaris tribuloides.

Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids

Evolution of the animal body plan is driven by changes in developmental gene regulatory networks (GRNs), but how networks change to control novel developmental phenotypes remains in most cases unresolved. Here we address GRN evolution by comparing the endomesoderm GRN in two echinoid sea urchins, Strongylocentrotus purpuratus and Eucidaris tribuloides, with at least 268 million years of independent evolution. We first analyzed the expression of twelve transcription factors and signaling molecules of the S. purpuratus GRN in E. tribuloides embryos, showing that orthologous regulatory genes are expressed in corresponding endomesodermal cell fates in the two species. However, perturbation of regulatory genes revealed that important regulatory circuits of the S. purpuratus GRN are significantly different in E. tribuloides. Thus for instance mesodermal Delta/Notch signaling controls exclusion of alternative cell fates in E. tribuloides but controls mesoderm induction and activation of a positive feedback circuit in S. purpuratus. These results indicate that the architecture of the sea urchin endomesoderm GRN evolved by extensive gain and loss of regulatory interactions between a conserved set of regulatory factors that control endomesodermal cell fate specification.
© 2018 Eric M Erkenbrack et al. All rights reserved.